视觉检测领先者
全国咨询热线:13812953225

工业机器视觉未来趋势预测

发布时间:2022-10-03 03:21:31 来源:雷竞技网页 作者:雷竞技网页入口
案例介绍

  机器视觉的产生顺应工业自动化的发展,天生具备机器高精度、高速度的特征,在特殊应用领域如面板生产、半导体,机器视觉有不可取代的作用,并非只是单纯的“降本增效”。下游产业不断纵向迭代(如汽车的智能化、面板领域的屏幕迭代)、横向扩张(如半导体、新能 源、工业机器人等),对机器视觉的需求愈发巨大。

  过去国内的低廉劳动力充足,而目前中国的老龄化程度相当于日本的 90 年代,逐渐迈入老龄化的过程,人口结构的变化导致劳动力成本的上升,将迫使企业不断加大在自动化、智能化的投入。

  全球制造业逐步向中国转移,带动中国机器视觉由硬件至软件的全面发展,上游零部件中光源、工业相机先逐步国产化,镜头、图像底层软件有其存活的空间。国内方案商具备更多服务头部客户的机会

  在高端领域,国内的龙头企业会与康耐视、基恩士等正面交锋,在技术追赶后通过高性价比逐步稳固行业份额。在中小企业或非标品的需求中,国内企业具备高性价比、本地服务的优势,但因产品、模式难以复制,存在无法大规模扩张的风险。

  随着深度学习、3D视觉技术等新技术的发展,中国企业存在在新技术上弯道超车的机会。

  智能相机是传统基于PC系统的集合体,有集成度高、成本低、运用灵活的特性,目前机器视觉方案商、 工业相机的生产商、自动化设备生产商都正研发或已推出智能相机产品

  3D视觉有助于拓宽2D视觉无法触及的领域,拉高行业的整体天花板:相较于2D视觉,3D视觉可以更好地进行多传感器融合,检测快速移动目标并获得形状、对比度、空间坐标信息等深度信息,应用领域远 多于2D视觉;国际巨头与国内上市公司都已将3D视觉作为未来重要的研发方向之一,一级市场的相关投 融资愈发活跃。根据MarketsandMarkets的研究,全球3D视觉传感器市场将在2025年达到100亿美元, 实现27.6%的年复合增长。

  深度学习将机器视觉的效率和鲁棒性与人类视觉的灵活性结合,能完成更复杂的环境中的检测:对于随 机出现的复杂外观检测,传统的机器学习无法保障其稳定性,而深度学习是对传统机器学习算法的颠覆。深度学习将融入智能相机、3D视觉之中。康耐视已在2020年4月推出集成了深度学习功能的工业智能相 机 In-Sight D900。

  机器视觉作为智能制造的大脑和眼睛,是工业互联网边缘层的重要数据入口:工业互联的趋势要求生产 控制系统集成到上层的制造管理系统,并接入企业管理系统,实现信息从生产现场到管理层的贯通, 行业内的企业、 行业协会、 产业联盟在机器视觉互联互通方面,正在不断合作和投入,制定数据接口、 通讯协议等基础共性标准。

  以上便是上海电子展小编整理好的相关内容,欢迎到上海电子展参观交流,和行业大咖面对面交谈。返回搜狐,查看更多

在线客服
联系方式

热线电话

13812953225

上班时间

周一到周五

公司电话

13812953225

二维码
线